Chapter 2

Coupling of angular momenta

2.1 Definitions

Consider the operator J defined by
J=J1+Js (2.1)

The two operators on the left hand side act on different systems (1 and 2) and do
therefore commute, c.f. J; = L and J, = S. J is an angular momentum because the
operator obey the commutation relation Eq. (1.4),

(i, J5) = [Ji+ Jaiy Jij + Jog] = [Juis Jig] + [Juis Joj] + [J2i, Jij] + [Jais Jog]
= ihepJik + theijrJor = iheijpJy

Because J; and Jo, commute, JZ, JZ,J;, and Jp, all commute and the simultaneous
eigenfunctions make up a complete basis. We note that the operator I' with quantum
number v sometimes has to be introduced to make the basis truly complete, i.e. the
situation could arise where the eigenfunctions are not uniquely specified by other
quantum numbers. An example of this situation is the double occurrence of the terms
2D, ?F, G and ?H in the 4f3 and 4f!! configurations (Nd** and Er®*) and the ten
times occurring 2F and 2G terms in 4f7 of Gd®**. Without the extra quantum numbers
that v represent (in these cases 7 = v(wiwows)(uius) 1) we could not differentiate
between the states. It was of course Racah that solved these difficulties in his papers
[7,8]. The simultaneous eigenkets to the observables ', JZ, J2, J;, and Jo, are written

[Y7152mams) (2.2)

These kets are the so called basis kets for the m;ms- representation.
We showed above that J defined by Eq. (2.1) was an angular momentum operator.
Because T, J2, J,, J? and J2 all commute the simultaneous eigenkets

V5152 M) (2.3)

L As we will see later, group theory played an important role in Racahs work. Actually, on restrict-
ing a group of transformations to its sub-groups (in the case of 4™, R3 C G2 C Ry C SU; C U7 C
GL7) the irreducible representation of the group decompose into the irreducible representations of
the sub-groups.
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will also form a complete system. These eigenkets are the basis kets for the JM-
representation.

2.2 Re-coupling of two angular momenta, Clebsch-
Gordan coefficients

The two systems with eigenkets Eqs. (2.2) and (2.3) are orthonormal which mean that
we have a unitary transformation between the two systems. The transformation can
be written

g M)y = Y |y didemyma) (Y didemymy | viije J M) (2.4)
7' 15y
The expansion coefficients (vy'j|jom|mb|j1j2J M) (overlap) is the scalar product be-
tween the two functions

<’Y'jij§m,1m,2|7j1j2JM> = /dF\Il*(y’j{j;m'lm;)q)(quljZJM) (2-5)
Note that we have used

L= > [dsmimo)(y'jijymimy| (2.6)
V' i dymymy
in Eq. (2.4). The scalar product Eq. (2.5) is independent of v and non-zero only if
J1 =71, jy = jo and my + mo = M. This simplifies Eq. (2.4) to

|’Yj1j2JM> = Z \’le]émlmz)<j1j2m1m2\j1j2JM> (2-7)
mi1+me=M
To prove that Eq. (2.5) vanish unless m; + mo = M we note that (J, = Ji, + Jo,)
(J, — J1z — Jo)|j1je I M) = 0. (2.8)

Multiply from the left with the bra (j;jemims|, and we get
(M — mq — ma)(j1jemamal|jijeJ M) =0 (2.9)

Obviously M = my + mg if (j1jomima|jijeJ M) # 0 The next thing to note is that
the coefficients vanish unless J = |j; — jof,[j1 — j2| + 1,...,71 + j2. This is most
easily shown by checking that the dimensionality is the same for both spaces, spanned
by {|jijamims)} and {|ji1j2J M)}, respectively. In the m;ms-representation we have
N1 = (251 +1)(2j2 + 1) because the possible values of M is —J, ..., J (see Eq. (1.24)).
The dimensionality of the space in the JM-representation is straight forward to derive
by assuming that J runs from j; — js to j1 + jo (j1 > j2). For each J we have 2J + 1
states. Adding we get

J=j1+j2

Ny = > (2J+1) = [Gauss formula] =
j=j1—j2

= 20— g2) + 1420 + ) + )22+ 1) = (241 +1)(2 +1)
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Thus, we see that Ny = Ny if J = |j1 — jol, |71 — J2| + 1, ..., j2 + jo. Corresponding to
Eq. (2.7) we have

Jj=j1+j2
Iviijemame) = > |[yjijed M) (jijad M |j1jamims) (2.10)
J=lj1—32|
and directly from Eq. (2.5) we have
(J1J2d M |j1jamime) = (j1jamamal|jije] M)* (2.11)

Next, two very useful orthogonality relations will be proven. These are:

i) > (Grjemamel|jije I M) (j1jad" M’ |j1jomama) = 85 s0urme

mimsa

i) D (jijed M|j1jamama) (jijamymay|jrja I M) = bt my Omim,
T

The proof for i) is obtained by starting with
(J1J2 ] M'|j1j2 I M) = 031570000,
inserting a 1" (closure)

Y. liidsmume)(jijsmime| = 1

J1ipmama
and we have proven the equality

> (rjed M| jrjamams) (jrjamama|jrja I M) = 6 ;00 m (2.12)

mi1mMmy
The next proof is equally trivial
(J1J2mymi| g1 jamima) = St my Omymy

and once again inserting a "1” (closure)

> i I M) (G I M| =1

didhTM
which give us the proof

> (Grgamymyy | j1ja I M) (j1j2 T M |j1jamama) = Gt my Omtms (2.13)
M
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2.2.1 The Clebsch-Gordan coefficients

The coefficients discussed in section 2.2 are of course the Clebsch-Gordan coefficients
(jrjemima|jijeJ M). These coefficients are non-zero only if

my = _jla"'ajl

me = _j2a"'7j2

M = m1+m2:—J,...,J
J = |j—2Jals-- 01+ o

The Clebsch-Gordan coefficients are simply the elements of a matrix that connect
the {mims}-basis with the {JM }-basis. We will return to these coefficients (derive
recursion relations) later on.

2.2.2 The phase convention of Condon & Shortley

Every wave function has a phase associated to it. The phase is of course arbitrary
because only the square of the wave function has physical significance. However, the
phase has to be fixed and kept throughout the calculations. It is common to use the
phase conventions introduced in the book of Condon & Shortley [4]. The convention
follows:

I) Ji only change m with +# and leave the other quantum numbers unchanged.
The first phase convention define the matrix elements of these operators to be real and
positive, i.e. the phase between two wave functions that only differ in m is now fixed.

I0) |vj1je(G1 + J2) (41 + j2)) = |¥j1J2J1J2)- The phase between the basis kets of the
two systems. Note that the left hand side ket has J = j; + j» and M = j; + j» and
that the ket on the right hand side has m; = j; and my = Js.

III) All non-diagonal matrix elements of J;, are real and non-negative. This fix
the phase for the wave functions with different j (Aj = 1).

2.3 The Wigner 3j-symbol

Using the different commutation relations derived so far and the phase conventions in
the previous section, it is possible to derive an algebraic expression for the Clebsch-
Gordan coefficients. This is very tedious and we therefore only give the final expression
(see for example Eq. (16) in Racah [3]).

(g1gamamaljijed M) = 6my tme.m

(27 + 1) (it + o = DG = m)! (2 = m2)!I(J + MOWJ = M)L ]2
(1 +d2 + T+ DT + 51— 32)U(J + G2 — 51)! (1 — +ma)! (G2 + ma)!
j1—m1— (1 +my +2)(jo +J —my — z)!
x o (=1 2.14
;( ) ol(J =M —2)(jy —mi — 2)!(Jo — J + my + ) ( )



2.3. THE WIGNER 3J-SYMBOL 11

This expression is obviously :) very symmetric, e.g. with x = J — M — y, we get
(J1gamama|jijod M) = (1)1~ (jajimama | jaj1 JM) (2.15)

The important conclusion is that the Clebsch-Gordan coefficients are not symmetric
with respect to the three angular momenta 7, j» and J.
In 1951 Wigner [5] introduced the 3j-symbol, defined by

jl j2 j3 — (_1\j1—j2—ms3 . —1/2/; Coes
(ml - m3) (=1) (275 + 1) /= (j1jamima|j1j2ds — ms3) (2.16)

The 3j-symbol was designed to display symmetries such as Eq. (2.15) in a symmetric
and uniform way. For example, an odd number of permutations of the columns change
sign if j; + jo + 73 is odd, i.e.
i J2 Js = (—1)i1tietis J2oJv s (2.17)
mi; Mz Mg my M Mg

whereas an even permutation do not change sign

mi my Mg my My My '
It also follows that 3j-symbols with two identical columns are zero, and it can be
shown that

( i J2 J3 )Z(_l)j1+jz+j3< v g2 s ) (2.19)

my Mo M3 —miy —Mo —MN3

Analogous orthogonality relations to those for the Clebsch-Gordan coefficients Egs.
(2.12) and (2.13) will now be derived.

i ) ( Ji J2 I3 ) ( Ji J2 j:{;, > _ M (2.20)
mame \ 1 M2 M3 myp Mg Mg [73]
. Jv J2 J3 i Je Js Y\ _
11) Z’ ( mi Mo Ms3 ) ( my Mo mfo, > N
m1m2m3m3
. . . 3 . -/
3 ( JuoJ2 Js ) ( JuoJz s ) = 61, (2.21)
mimams \ 101 T2 M3 myp Mg Mg :

" ( o2 Js )( v J2 Js >(2j3+1):5m,1m15m,2m2 (2.22)

! i
: m m m m m. m,
jams 1 2 3 1 2 3

Eq. (2.16) relate the 3j-symbol with the Clebsch-Gordan coefficients and Egs. (2.12)
and (2.13) are the orthogonality conditions. The proof of i) is straight forward, Eqs
(2.12), (2.16) and (2.11) immediately give

Z ( jl j2 j3 )(_1)—j1+j2—m3(2j3+1)1/2( jl j2 ]é ) x

_ !
mims my1 Mo ms m1 Mo ms

(—1) 9492 (254 + 1) = 61,6t m
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Noting that the sum is independent of ji, jo and mg3 plus the variable substitutions
—mg3 — m3 and —mj — mj proves the equality. The second proof we obtain by noting
that the first equality comes from 6y, in i). The second equality comes from the
fact that there are (23 + 1) mg3 states. Now using the results of i) we have proven ii).
The last proof iii) is very similar to that of i). Eqs (2.13), (2.16) and (2.11) result in

jl j2 j3 _1\—J1+j2—m3 - 1/2 j]. j2 j3
Z<m1 mo —ms)( 1) (275 +1) (m'l ml —m3>x

Jjsmsg
(_1)_]1+J2_m3 (2]3 + 1)1/2 = 5m'1m15m’2m2
By substituting —m3 — mg3 we arrive at the desired result.
The 3j-symbols are non-zero only if

mz:_]ua]z
m1+m2—|—m3=0
lj1 = Jo| < s < g1+ 52

which is obvious because the Wigner 3j-symbol is proportional to the Clebsch-Gordan
coefficients, c.f. Eqgs. (2.16) and (2.14). There are many special cases where the
evaluation of the 3j-symbols is particularly simple. One such case is

( 731 _J;n 8 )  (c1)m(2) 4 1)1 (2.23)

Wigner’s definition of the 3j-symbol is not the only work on symmetriesed coefficients.
Below is a table including four other symmetriesed coefficients and their relation to
the Wigner 3j-symbol.

Lo — (__1)Ja+i2—d1 jl j2 j3
Racah(1942)  V(j1j2J3; mimams) = (—1) (ml o m3> (2.24)

P o (_qyh—detis [ J1 J2 T3
Landau & Lifschitz(1948)  Sjimiijomasjsms = (—1) <m1 e ) (2.25)

Fano(1952) <j1m1,j2m2,j3m3|o>=<—1>J‘1+J‘2+f3(73;1 ey ;) (2:26)

Schwinger(1952) X(jlejg;mlQO?,):( T]nll 7?”22 T]n?'?’) (2.27)

These symmetriesed coefficients are being used less and less often and the Wigner
3j-symbol seem to be the one surviving.
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2.4 Coupling and re-coupling of 3, 4 and 5 angular
momenta; 6j-, 9j- and 12j-symbols

In the previous section we did see how the 3j-symbol came about when investigating
the re-coupling of two angular momenta. We will now see that the same reasoning as
used above can be generalized to include an arbitrary number of angular momenta.
When studying the re-coupling of 3, 4 and 5 angular momenta we will see that the 6j-,
97- and 12j-symbols will appear rather naturally in this process. There is one more
obvious difference when re-coupling more than two angular momenta compared to the
re-coupling of two angular momenta, we have to specify intermediate states, and this
will result in a rather “messy” index “orgy” as will be apparent in the next sections.
The short notation [z] = (22 + 1) will continue to be used extensively.

2.4.1 The 6j-symbol

Consider the coupling of three angular momenta j;, jo and j3, forming the resultant
J. We start with the eigenkets

[Vi152J3mamams) (2.28)

of T, J2 J2,J2, J1,, Jo, and J3,. A first naive attempt to form an eigenket including J
would be |yj1j2j3J M) of T, J2, J2, J2, J?, J,, but as we will show, v, 71, j2, j3, J and M
do not uniquely define the states, i.e. more then one eigenfunction will have the same
J and M. To see that our naive attempt fails we perform a dimensional analysis. Eq.
(2.28) have the dimension

(21 + 1)(2j2 + 1)(2j3 + 1) (2.29)

for obvious reasons. |yjij273J M) has the dimension (in the best case where we assume
the summation start from 0)

Ji+j2+33 1
Y, 2741 = FQRUL+h+i)+ 1+ D)0+ i+ +1)
J=0
= (i+j2+js+1) (2.30)

With j; = jo = j3 = 1 (just as an example) we get 27 and 16 for the two different
expressions. Obviously it is not correct to just add the three angular momenta forming
J. Giving it a little extra thought one realize that because |yj;jejzmimams) and
|v717273J M) do not even have the same number of quantum numbers, something must
be done. The solution is to specify an intermediate state ji2, jog or j13. Choosing jio
we get the dimension

J1+j2 Jji2+js Ji+j2
S0 @I+ = Y 25+ 1)(25+1)
J12=j1—j2 J=j12—J3 J12=j1—j2

= (251 +1)(242 + 1)(2j5 + 1) (2.31)
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which obviously is in agreement Eq. (2.29). In analogy with the standard addition of
vectors, our next attempt (which of course will be successful) will be to additionally
specify an intermediate resultant, i.e. including the eigenstates of J%, J% or JZ. The
eigenkets now takes the form (for the two first choices)

|7 (J1J2) 71253 M) (2.32)
or
1771 (J2J3) J23J M) (2.33)
Both sets of quantum numbers uniquely specify the states. Note that
o = il 234
Jos = |ja—Jsl-- s J2+ 33

The two different coupling schemes can be visualized in with help from figure ?7.
fig2.
Similar to the case where we coupled two angular momenta we can change between
the two representation, c.f. Eq. (2.7).

v(J1d2)reds I M) = D |7(jrje)drzdzmazms) X

mi2ms3

(v(j12) jr2gzmaama|yji (Jojs) jes I M) (2.35)
The ket on the right hand side of Eq. (2.35) can be decoupled,

Iviidegiemus) = Y |jijamame) (jijemams|jijajiamas) (2.36)

m1msa

Egs. (2.35) and (2.36) together give

Y(Gd2)drads M)y = Y |yiidadsmamems) X
mi2Mm3amimsa
(j1j2m1m2 \j1j2j12m12> <(j1j2)j12j3m12m3 | (j1j2)j12j3JM) (2-37)

and for Eq.(2.33)

vi1(J2gs)jes I M) = Y |yjijejsmamams) X
ma3mi1mams
(J2gsmaemis|jajsiesmas){j1(jajs)jesmimas|ji (j2Js) jos I M) (2.38)

It has already been pointed out that both sets Eqgs. (2.32) and (2.33) are complete
and orthonormal, hence we can change representation , 7.e.

771 (g203)J2s T M) = D |v(d12)dradsd M){(J12)dr2da T |71 (G2gs) jes Ty (2-39)
Ji2
Note that the summation is only over j;o because all other quantum numbers are

shared. Also note that the expansion coefficients in Eq. (2.39) is independent of ~y
and M and these are therefore left out. Eqgs. (2.37) and (2.38) when orthogonality
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and the definition of 3j-symbols (Eq. (2.16)) has been used, gives (c.f. Eq. (2.4) and
Eq. (2.5)) for the overlap in Eq. (2.39)

((J172)g1273J |71 (J2gs) Jasd) = /dm’(7(j1j2)j12j3JM)*‘1’(’Yj1(j2j3)j23JM)

= Z <j1j2m1m2 |j1j2j12m12> <j12j3m12m3 |j12j3JM>

m1m2m3mi2ma3

X (jogzmaems|jagsjosmes) (j1je3mimas|j1josJ M)

_ Z (_1)j1—j2+m12+j12—j3+M+j2—j3+m23+j1_j23+M []12][]23][J]

m1m2m3m12123
i J2 Iz Jiz J3 J
X
mi Mg —Mi2 mis m3 —M
J2Js J2 Ji Je3 J
X 2.40
< my M3z —Mpy3 ) ( my myy —M ) ( )

where the symbol [z] = (22 + 1) has been used. Now rewrite Eq. (2.40) as
((j172)dr273J |71 (G2ds) j2s ) = (—1)jl+j2+j3+J{ s jJQ i } (2.41)
J3 J23

Note that the left hand side of Eq. (2.40) is independent of M and we can therefore
replace [J] = (2J + 1) with a summation over M and Eq. (2.41) together with Eq.
(2.40) give the following symmetric expression for the 6j-symbol

Jv gz Js | _
Ja Js Je

Z (_1)j4+j5+j6+m4+m5+m6< JuoJ2 )3 ) %
M1M2M3TNATNE NG my mp Mg

i s Js Ja J2 Je Ja Js Js (2.42)
my My —Mg —Tg TNo Mg myg —My 13 ’

As we have seen before, the 3j-symbols put restrictions on the j-values and therefore
we have the following triangular conditions that must be satisfied for the 6j-symbol
to be non-zero (A(j1j23), A(Jijsds), A(jajads) and A(jujsjs), respectively)

{___}’{\——}’{/_\}’{—_/} (2.43)

or as a figure (see figure ?7). fig3.
Two useful properties that the 6j-symbol possess are
i) The 6j-symbol is invariant under any permutation of its columns, e.g.

Jv g2 g3 | _ ) J2 1 Js (2.44)
Ja Js Js Js Ja Je
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ii) The 6j-symbol is invariant under interchange of any two arguments in the
columns, e.g.

jl j2 j3 — j4 j2 jﬁ (2 45)
Ja Js Je Ji Js J3
We also note that the 6j-symbol is related to the less symmetric Racah coefficient by
{ P } = (= 1) (o o s s o) (2.46)
Ja J5 J6
To summarize the 6j-symbol section we note that the 6j-symbol appeared when re-
coupling three angular momenta. Just adding ji, jo and j3 to form J was not good

enough and we had to specify an intermediate state ji2, jo3 or ji3. The eigenkets in
these two representations are denoted

1Y (j172) 1273 M)
ek, 2.47
|71 (j2J2) J2sJ M) (2.47)

and the 6j-symbol is defined by the overlap of these two kets (different representations)
J1 J2 Ji2
((G1d2)r2d3 |71 (Gods)asT) o< § 5 F (2.48)
J3 J23
the 6j7-symbol appears extensively in the calculation of reduced matrix elements of
tensor operators, more on that later.

2.4.2 The 9j-symbol

When coupling four angular momenta, two intermediate states has to be specified for
the states to be uniquely defined. To illustrate this we look at figure ?7.

figd.

The eigenkets in the two representations can be written

17 (J12)J12(J34) jaa I M) (2.49)

|Y(5193) 713 (j2]4) Jos T M) (2.50)

As was done in Eq. (2.39) we can change between the two representations, both sets
are complete and orthonormal. We write this

v (j1d3) 13 (J2da) jea T M) = D |v(j1d2) 12 (Jsja) jaa T M) x
J12J34
((J172)712(J374) Jzad | (J173) 713 (J2a) Joa T ) (2.51)

and because the expansion coefficients are independent of v and M these are not
shown. The change of representation Eq. (2.51) can be done in three steps, each step
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involving only three vectors thus allowing us to use the formalism developed in the
precious section.

First consider j3 and j4 as constant and therefore fixed coupled to j34. To study the
coupling between ji, jo and js4 forming J we can chose to study (jij2)j12 or (j2jsa)jsa
and we get using Eq. (2.39) applied on Eq. (2.49)

|(v7344) (G1d2) Jrzdaad M) = [(vd3da) g1 (Jdaa) josad M) X

J234
<j1(j2j34)j234<]|(jlj?)j12j34J> (252)

As usually we have dropped unnecessary quantum numbers in the coupling coefficients.
Also note that j3 and j, have been written together with v because these are here
constant. Standard vector coupling on the ket on the right hand side in Eq. (2.52)
give for the same equation

|(v73ja) (Gri2)regsa M)y = D" [(Vj2sjajaa) jrjosamimags) X
J234m1ma3y
(J1(j2g34) J23a | (J172) 12734 T ) (J1J23am1 234 51 230 T M) (2.53)
The corresponding expression for Eq. (2.50) is
|(7i2da) (Gids)disjoad MYy = Y |(Vj2dsiades) jrioss™mmig,) X
Jog4M Miyzy
(1 (j3j24)j§34*]| (41J3)J13J24 ) (j1j§34m'1m'234 |j1j§34JM> (2.54)

We also note that the transformation between j3(jojs)jes and (Jsja)jsaje is
(7412341 M234) 3 (J2J4) J2a) = Y | (V4172341 N234) (J34) J3aJ2) X
Jaa
((J374)J3472723453 (J24) JoaJoza) (2.55)
Eq. (2.55) tell us how to get between the representations used on the right hand side
of Egs. (2.53) and (2.54).

The coupling coefficient (overlap) in Eq. (2.51) can now be written, using Egs.
(2.53), (2.54) and (2.55)

<mmmmMMﬂmmmmMMﬂ:/mmmmpJ:

Z<(j1j2)j12j34<]|j1 (j2j34)j234j> <(j3j4)j34j2j234 |]3 (j2j4)j24j234> X

J234
(71 (d3d24) 3234 |(4173) J13J24) (2.56)
where we have used the following
((v7ogsiadsa)jijosamimasa| (Yiodsjados) J1iasa M Mgy ) = (2.57)
Z((j3j4)j34j2j234 |73 (d274) 2452340 1y o4 Oty Ormtyy s (2.58)
J34
S| mimiy ) (. mimiy, | =1 (2.59)

7 !
My Myzy
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and
(AlA) =1 (2.60)

The sums over j3; in Eq. (2.58) can now be removed because js and j, are not fixed
coupled to js4 in Eq. (2.56). By using the results in Eq. (2.41), Eq. (2.56) takes the
form

((4172)712(d374) 334 T |(4173) 513 (J2da) Joa ) = \/[jlz][j34][j13][j24] X
1)l jl J2 j12 ]:3 j4 ]:34 :7'1 J3 j13 261
J%( )7 { Jsa J Joza J2 Jo3a Joa Joo J Joma (2.61)
and with the above equation in mind the 9j-symbol is naturally defined by
J1 Je iz
((J172)J12(Gaga) Jaa | (4173) 13 (Jaga) JaaT) = \/[j12][j34] [13][J24] § J3  Ja Jaa ¢ (2.62)
Ji3 Joua J

Egs. (2.61) and (2.62) relate the 9j- and 6j-symbols
Ji J2 J3 S L S
S _ _1)2 J_l ]_4 J7 ]_2 Js ]_s J3 J_s ]9 263
AR sz( ) M{Js jo z s w ds flz g1 g ) O
Jr J8 J9

Maybe the most common application for the 9j-symbol is when changing representa-
tion from LS- to jj-coupling in a system of two equivalent electrons, e.g.

fig 5.

Changing from jj- to LS-coupling (illustrated in figure ?7?) lead to

[y (s101)1(5202) oI M) = D |v(s152) S (lila) LIM) X

((s152)S(ll2) LI |(s101) 1 (s2l2) j2 ) =

S1 89 S
Y [v(s182)S(Lle) LIM)W/I[SILIG2] § L o 5 (2.64)
SL Ji J2

It is straight forward to obtain the relation between 95- and 3j-symbols, c.f. Eq. (2.63)
where the relation between 9j- and 6j-symbols were derived. Pairwise decoupling of
the momenta, i.e. first decouple j15 and j34 from J and then j; and j, from j;2 and
finally 75 and j; from j34. We get

|7 (J1i2)J12(d3J4) jaa S M) = > |Yj172J3Jam1mamsmy) X

m1Mm2Mm3Im4imni121m34

(J1d2mamae|j1jad12maz) (Jajamama|jsjajsamsa)(ji2J3amizmaa|j12J3aJ M) (2.65)

and

|Y(4173) J13 (J2ja) joa I M) = > |YJ172d354mimamsmy) X

mima2m3ma4mizma4

(J173mams|j1dsj13mas) (Jedamoma|jajajoamos) (13 joamisMea | j13J24a S M) (2.66)
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In changing representation from that of Eq. (2.66) to that of Eq. (2.65) involves
Eq. (2.51) where once again (c.f. Eq. (2.56)) we are interested in the coupling
coefficient (overlap). This all together give for the overlap (the summations are over
m1m2m3m4m12m34m13m24)

((J172)712(d37a) 334 | (4173) 313 (J2ja) Joad) =
> (r2dza I M | jr1233amaomiza) (Jsjadsamaal jajamama) (Jijajizmas| j1jamims) X

(J1ismams|jijsjizmas) (Jojamomaljojajoamon)(J13j2amizmea|j1zjea M) =
Z(_ 1)j12—j34+M+j3—j4+M34+j1 —j2tmiz2+j1—js+miz+j2—Jjat+maa+ji13—j2a+M %

[J]\/[j12][j34][j13][j24]( Jiz g )(j3 i >X

mig mas —M m3 Mg —Mg3y

J1 Je Ji2 J1J3 J13 J2 Ja J: «
m; Mz —Mao m; mz —Ma3 mg Mg —Moy

JiJ2 12

J13 JuJ - Lo J2
- 2.67
( miz Moy —M > \/[-712][.734][]13][]24] ]]133 j; ]34 ( )

Once again noting that the expression is independent of M which means that we can
replace [J] by a sum over M. Finally after this rather tedious procedure, we can write
down the relation between 97- and 3j-symbols,

Ji J2 s _ . _ . . '
. . . i J2 I3 Jja  Js  Je

N X 2.68
;i ‘;Z ;2 mlgﬁm ( mp Mgy M3 ) ( ms Ms Mg ) ( )

Jr Js  J9 i Ja Jr J2 Js s J3  Jo  J9 (2.69)
mr Mg 1My my Mg My mo My Mg mg Mg My )

From the symmetry properties of 3j-symbols it follows that the arguments in each
row /column must satisfy the triangular condition, see Eq. (2.23). An odd permutation
of rows/columns change sign on the 9j-symbol if 3, j; is odd, and the 9j-symbol is
invariant under an even permutation. Later on it will show very useful to know how
the 9j-symbol behave when one of its arguments is zero. We start by noting that
PG 0N ey )
(3 20 0) =0 2.10)
This together with the definitions of 9j- and 6j-symbols in terms of 3j-symbols (Egs.
(2.69) and (2.42), respectively) give

Ji J2 J3 S i gy g
ju Js s =PWWWWWMWVW{}'2§} (2.71)
Jr g1 0 Js Ja J7

Note that jg = j3 and jg = j7 because of the triangular condition.

We finish the 9j-symbol section by remarking that the 9j-symbol is important not
only when going from LS- to jj-coupling but also when calculating matrix elements
of tensor products as will be recognized later.
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2.4.3 The 12j-symbol

When re-coupling five angular momenta we will encounter the 12j-symbol. Because
the number of indexes have increased we now use letters to mark the angular momenta.
The overlap elements when changing coupling schemes from

atb=e rte=p ctd=f p+f=s (2.72)
to (by permuting b, c)
a+c=g, 7r+9g=q, b+d=h, h+q=s (2'73)

when the five angular momenta a, b, ¢, d and r shall be added to form s, and we have to
specify the intermediate states ¢, p, f and g, g, h for the two different representations,

} (2.74)

S /o
S o
w3

((r(ab)e)p(cd) | (r(ac)g)q(bd)hs) = \/[e] ]l] 1] p]la] { ¢
g

The relation of 125- to 9j- and 6j-symbols is

i)

R R VAR
f
b

coset{ s T s

z

@ o 2
S o
S = 0o
VSIS

8 - o

Z }(2.75)

t is the sum of all angular momenta in the 12j-symbol. The 12j-symbols are used
when calculating the fractional parentage coefficients to which we will return later.



